Assessment Schedule – 2008

Mathematics: Use coordinate geometry methods (90287)

Evidence Statement

	Assessment Criteria	No.	Evidence	Code	Judgment	Sufficiency
ENT	Use coordinate geometry methods.	1(a)	7y = x + 23 or $y = 0.143x + 3.29$	A	Or equivalent.	ACHIEVEMENT: TWO A (either A or A \(\sigma \)
ACHIEVEMENT		1(b)	$\sqrt{50} = 7.07106$	A	Or equivalent.	Replacement from Q3 to Q6 – need two different methods correct to gain achievement.
Ŧ		2	(16,11)	A	Or equivalent.	
ACHIEVEMENT WITH MERIT	Solve problems involving coordinate geometry methods.	3	$m_{1} = -\frac{5}{3}$ $\perp m_{1} = \frac{3}{5}$ $-\frac{5}{3} \times -\frac{4}{k} = -1$ $k = -\frac{20}{3} \text{ or } -6.6$ Grad of BC is 1 Eqtn BC $y = x + 3$ Perp $y - 5 = -1(x - 3)$ or $y = -x + 8$ Solve intersection $-x + 8 = x + 3$ (2.5,5.5)	A• M A□	Gradient and perpendicular concept. Must show working. Equivalent methods acceptable. Both equations. Must show working. Equivalent methods acceptable.	ACHIEVEMENT WITH MERIT: Achievement plus 2 M OR Achievement plus 1 M and 1 A• (from Q3 onwards) OR 3 M

	C 1					
	Solve extended problems involving	5	$25 + (y-2)^{2} + 4 + (y-5)^{2}$ = 58 pythagoras eqt	A· M	Both lengths Must have supporting	ACHIEVEMENT WITH EXCELLENCE:
	coordinate geometry		$2y^2 - 14y = 0$		working and a logical argument.	Merit plus code 1 E
	methods.		y = 0, or 7 (1,0) or (1,7)	Е		OR
			Or gradient method $C4 - y - 2$			2 M AND 2 E
			$CA = \frac{y-2}{5}$ $BA = \frac{y-5}{-2}$	A•	Both gradients	
			Perp grad			
			$\frac{y-2}{5} = \frac{2}{y-5}$ $10 = y^2 - 7y + 10$	M		
NCE			0 = y(y-7) (1,0)			
CELLE			(1,0)	Е		
гн ех		6	Down 1			
ACHIEVEMENT WITH EXCELLENCE			Perp $m = -1$ Eqn perp line $y - 2 = -1(x - k)$ y = -x + k + 2	A٠	Must have supporting working and a logical argument.	
ACHIE			Intersection with $y = x + 4$			
			$x + 4 = -x + k + 2$ $x = \frac{k}{2} - 1 = \frac{k - 2}{2}$ $y = \frac{k}{2} + 3 = \frac{k + 6}{2}$	М	Equivalent methods acceptable	
			Perp dist with $(k,2)$ is 4 $(k+2)^2 + (k+2)^2 = 4 \times 16$ k = 3.66 or $-7.66(k = -2 \pm \sqrt{32})$	E		
			OR <i>formula</i> $(k,2) x - y + 4 = 0$ $\pm 4 = \frac{k + -2 + 4}{\sqrt{1+1}}$			
			$\pm 4 = \frac{\sqrt{1+1}}{\sqrt{2}}$	M		
			$\pm 5.66 = k + 2$			
			K = 3.66 or k = -7.66	Е		

Judgement Statement - 2008

Achievement	Achievement with Merit	Achievement with Excellence
Use coordinate geometry methods.	Solve problems involving coordinate geometry methods.	Solve extended problems involving coordinate geometry methods.
	Achievement plus	Achievement with Merit plus
2 × A (either A or A•)	$2 \times M$	1×E
 need two different methods correct to gain achievement. 	OR	OR
	Achievement plus	$2 \times M$ and $2 \times E$
	1 × M and 1 A (from Q3 onwards)	
	OR	
	3 × M	

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.
- A• shows sufficient working at Merit level without giving the correct answer.